Review of the High Energy Frontier Parallel Sessions

Oliver Stelzer-Chilton TRIUMF

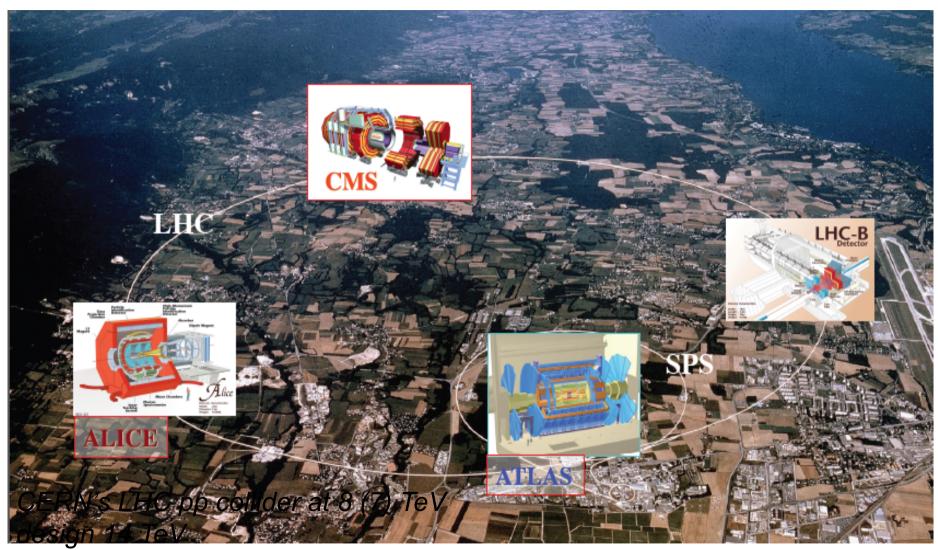
> Roni Harnik Fermilab

CIPANP 2012 St. Petersburg, Florida May 28th – June 3rd 2012

Outline

Parallel Session Topics and Convenors

High Energy Frontier:


Oliver Stelzer-Chilton [TRIUMF]

Roni Harnik [FNAL]

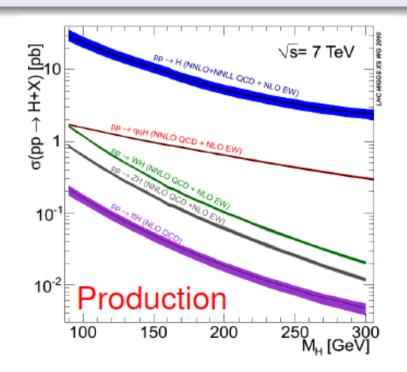
Direct Searches for Higgs, SUSY, Exotics, Extra Dimensions (Collider results from the LHC and Tevatron and theoretical interpretations)

- Total of 31 talks, of which 12 were invited
- Six sessions, broadly themed on a topic
- Searches for the Higgs boson Tuesday and Wednesday
- Beyond the Standard Model Searches: SUSY Wednesday
- Beyond the Standard Model Searches: Exotics Thursday
- Beyond the Standard Model Searches: Involving top quarks Saturday

The LHC

2011: 5.6 fb⁻¹ delivered by LHC 5.2 fb⁻¹ recorded by ATLAS and CMS experiments

TRIUMF

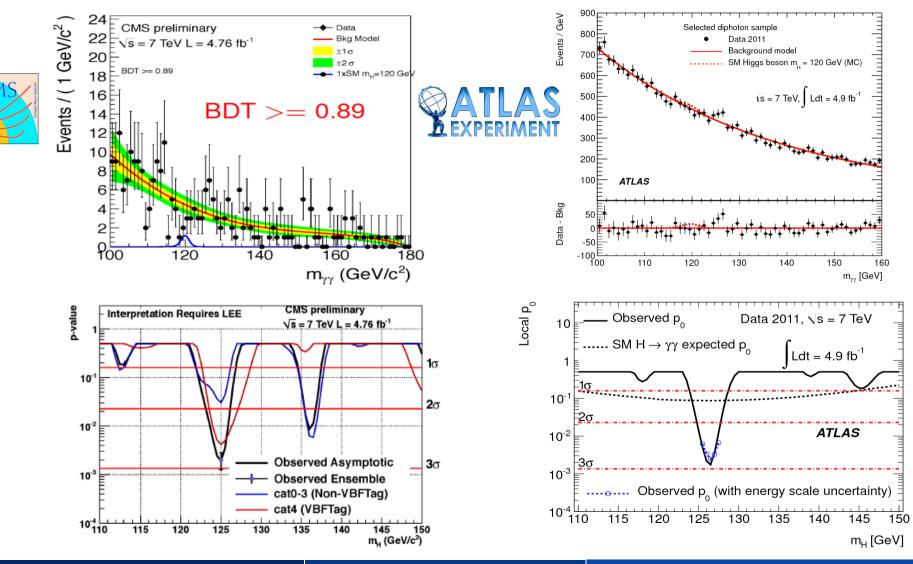

Searches for the Higgs Boson

Standard Model Higgs Searches at the LHC

Previous Higgs' Constraints

- Indirect constraints
 - EW precision measurement M_H < 143 GeV favored [GFitter, 2011]
- Direct search exclusions at 95% CL
 - LEP M_H < 114.4 GeV</p>
 - Tevatron 147 < M_H < 179 GeV</p>

Higgs' Production


- Gluon fusion dominates Higgs' production at LHC
- Other channels provide extra final state tags

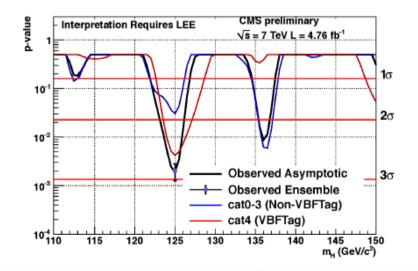
Most sensitive channels at low mass: $H \rightarrow \gamma \gamma$, $H \rightarrow WW$, $H \rightarrow ZZ$

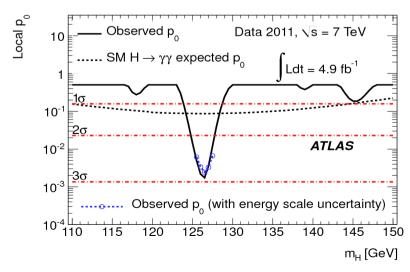
TRIUMF

Higgs→γγ

Two high p_T photons, reconstruct invariant mass, good mass resolution

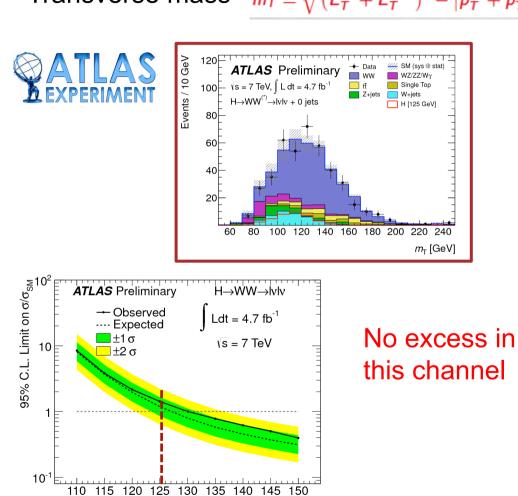
Oliver Stelzer-Chilton


TRIUMF

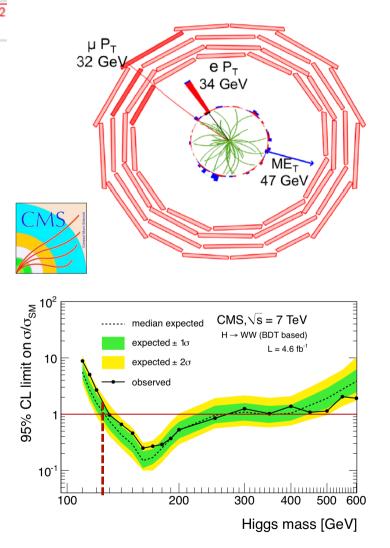

Higgs→γγ

Two high p_T photons, reconstruct invariant mass, good mass resolution

Both experiments see similar "small" excess in this channel near 125 GeV


Oliver Stelzer-Chilton

Higgs→WW*


Most sensitive channel in broad range ~125-180 GeV

No mass reconstruction due to presence of two neutrinos

Transverse mass $m_T = \sqrt{\left(E_T^{\ell\ell} + E_T^{miss}\right)^2 - \left|\vec{p}_T^{\ell\ell} + \vec{p}_T^{miss}\right|^2}$

m_H [GeV]

$Higgs \rightarrow ZZ^* \rightarrow 4 \ leptons$

Golden Channel, Best Signal/Background, good mass resolution CMS $\sqrt{s} = 7 \text{ TeV L} = 4.7 \text{ fb}^{-1}$ 5 Data [• 4e, • 4µ, • 2e2µ] Z+X

Bertrand Laforge

Small excesses observed around 3 mass values. Local significance:

m _{4ℓ}	125 GeV	244 GeV	500 GeV
Exp. w. signal	1.3σ	3.0 <i>o</i>	1.5σ
Observed	2.1σ	2.2σ	2.1σ

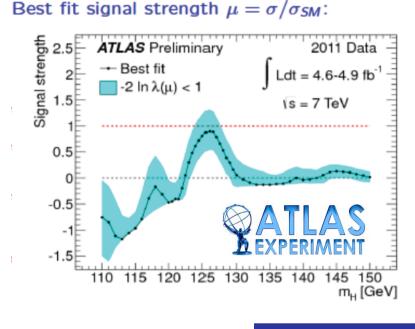
Chris Palmer Minimum p-value at 119.5 GeV

w/o m4e uncertainties

with m_{4ℓ} uncertainties

Global significance 1.0σ (local 2.5σ)

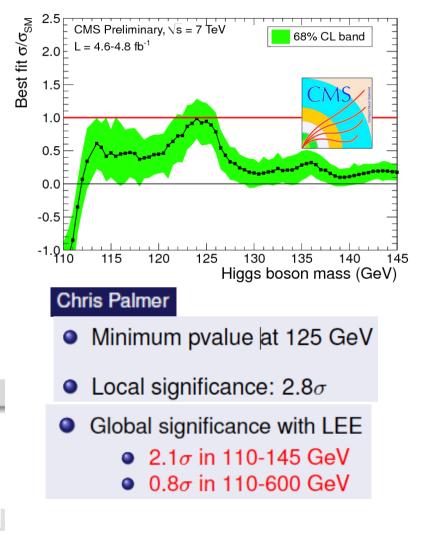
10⁴ 110 115 120 125 130 135 140 145 150 155 160


Local significance at ~120 GeV diluted in combination

M_H [GeV/c²]

160

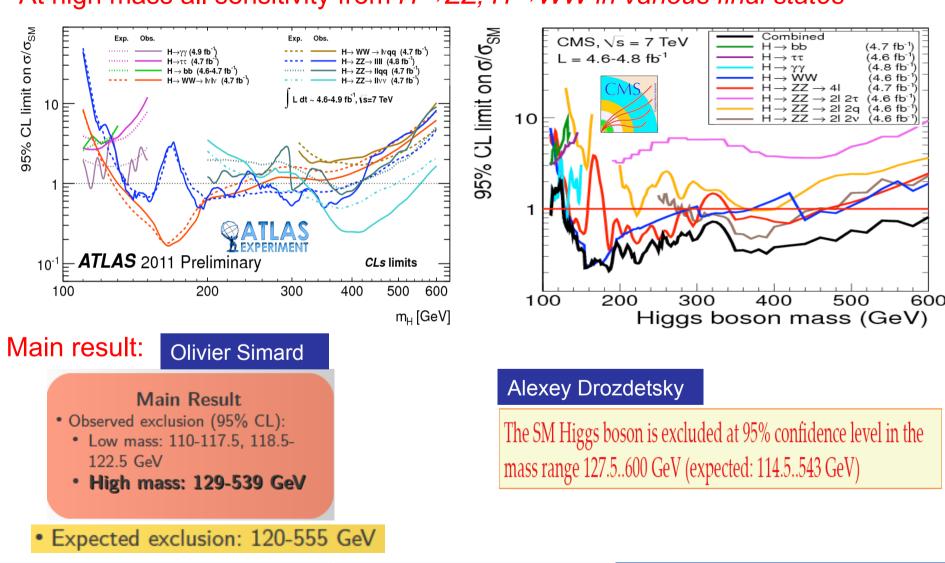
Combination


Fit for observed signal strength (all channels) vs mass

Bertrand Laforge

Excess of events observed at 126 GeV:

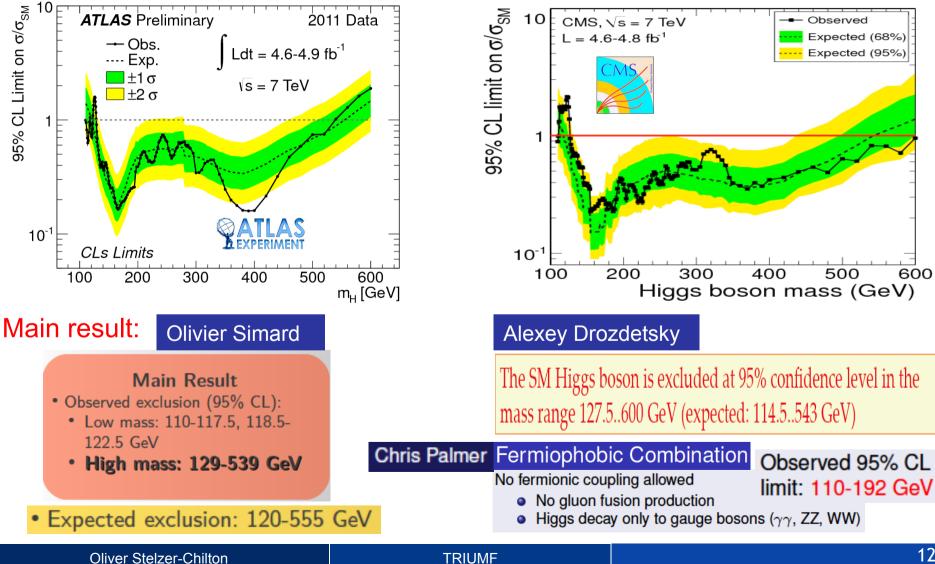
- Observed local significance 2.5σ (expected 2.9σ).
- Best-fit signal strength at 126 GeV: $\hat{\mu} = 0.9^{+0.4}_{-0.3}$.
- Global probability of such a background fluctation : 10%. in the mass range (110-146 GeV)



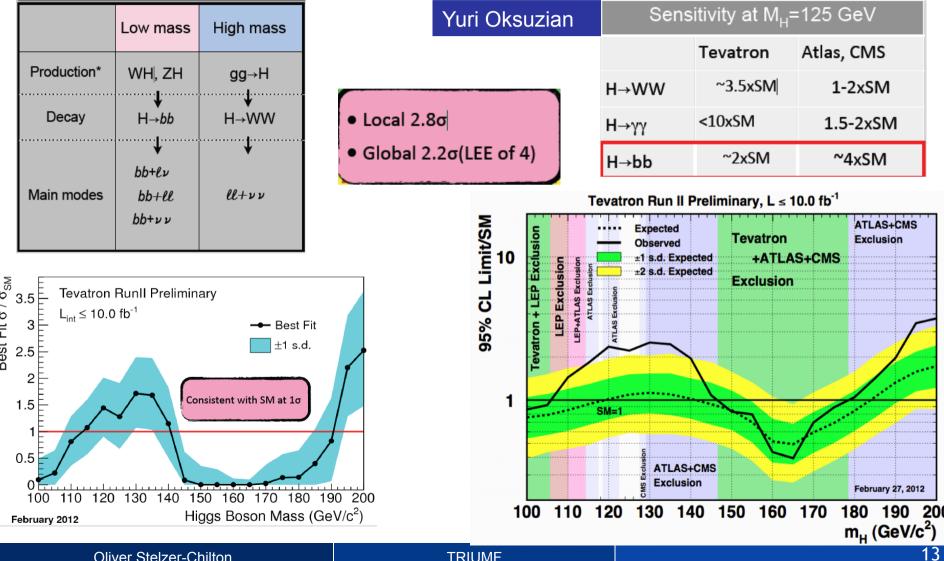
More Data from 2012 will tell if trend continues!

TRIUMF

Full Mass Range Combined Exclusions

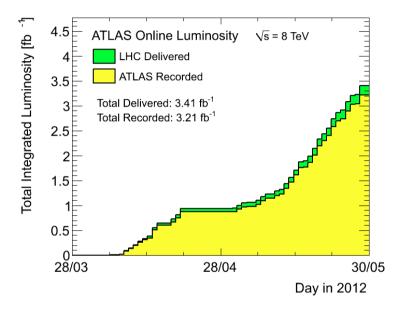

Many channels over full mass range At high mass all sensitivity from $H \rightarrow ZZ$, $H \rightarrow WW$ in various final states

Full Mass Range Combined Exclusions


Many channels over full mass range

At high mass all sensitivity from $H \rightarrow ZZ$, $H \rightarrow WW$ in various final states

Higgs at the Tevatron


Long history for Higgs search, complementary to LHC, since associated production, WH, ZH contributes at low mass

Oliver Stelzer-Chilton

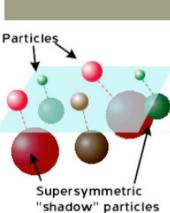
Higgs in 2012

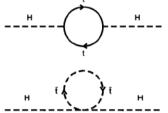
LHC is confident to deliver 15-20 fb⁻¹ this year (>3.4 fb⁻¹ delivered) Enough data to either exclude or discover Higgs

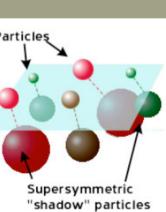
In case of discovery important to determine if indeed SM Higgs - spin, couplings...

Jamison Galloway CMS $[\sqrt{s} = 7 \text{ TeV}; \le 4.8 \text{ fb}^{-1}]$ С 0 68% CL 95% CL 0.0 0.5 1.0 1.5 а

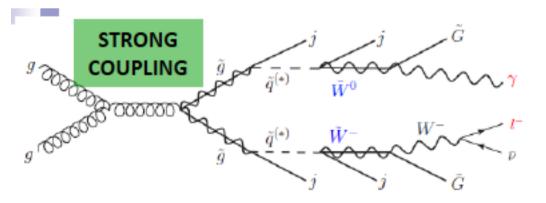
Higgs at 125 GeV would have the advantage to be accessible by many channels $H \rightarrow WW$, $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ$, $H \rightarrow \tau\tau$, $H \rightarrow bb$


Searches for SuperSymmetry


Supersymmetry


- The theory hypothesises a relationship between bosons and fermions
 - Leads to the prediction that every fermion has a bosonic super-partner and vice versa
- Theorists love SUSY (@ TeV scale) because:
 - It provides a solution to the hierarchy problem
 - It allows unification of the gauge couplings at high scales and therefore a GUT?
 - It can provide a dark matter candidate
- Experimentalists love it because:
 - Plethora of new particles to discover and measure
- Symmetry not exact
 - SUSY and Standard Model particles have different masses
 - SUSY is broken → what does it look like and how do we search?

Alex Tapper

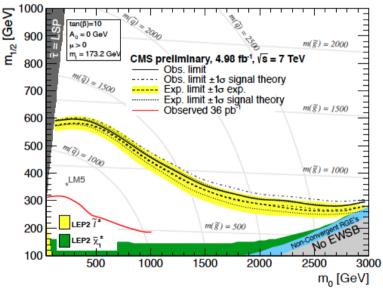


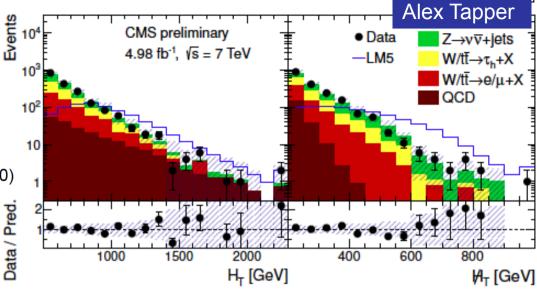
Alex Tapper

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	di-lepton +	Multi-lepton	(Di-)photon + jet + MET	Photon + lepton + MET

- Generic missing energy signatures
- Categorised by numbers of leptons and photons
- Many include jet requirement

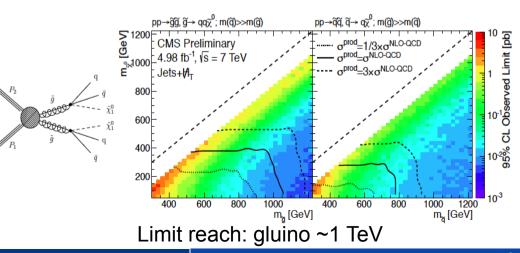
 strong production
- Transition from simple counting experiments to shape-based analyses


Bruce Schumm


High cross-sections probe high mass scale beam energy vs. luminosity "scale chasing"

Signature: Jets and E_T^{miss}

- No leptons (e or µ)
- At least 3 jets > 50 GeV
- Δφ between jets and MET
- Examine data in bins
 - H_T^{miss} (MET from Jets)
 - H_T (∑ of jet p_T)


Limit in the usual CMSSM plane (tanβ=10, A₀=0, μ>0)

• Simplified Model Spectra

- Limited set of hypothetical particles and decays
- Less specific mass patterns and signatures

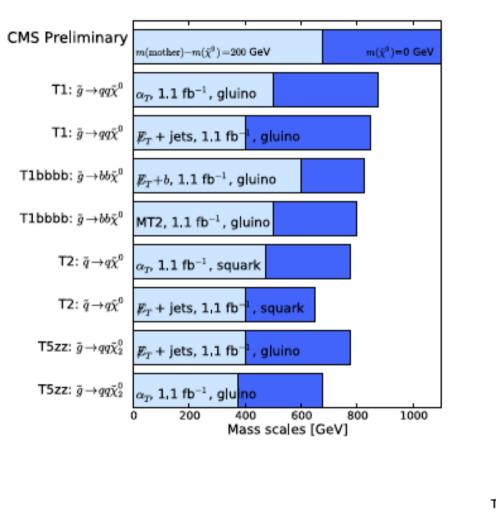
Clean way to communicate results of our searches and compare different channels \rightarrow no hidden theory dependence

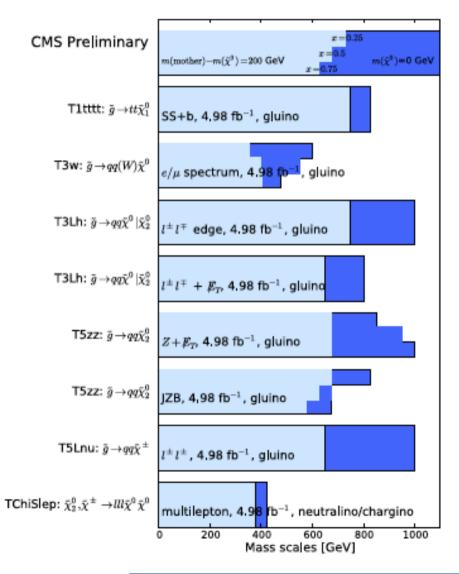
- Reference cross section scaled by 1/3 and 3 to demonstrate differences from spin or branching ration assumptions
- Areas of small mass splittings removed to reduce sensitivity to signal modelling

Electroweak SUSY

Results ATLAS

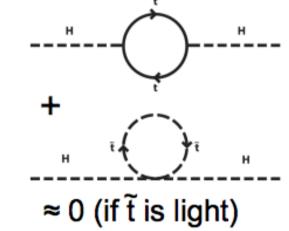
		ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)
	MSUGRA/CMSSM : 0-lep + j's + E _{T,miss}	$L = 47 \text{ m}^{-1}$ (2011) LATLAS-CONF-2012-1831 1.40 TeV $\tilde{q} = \tilde{q}$ mass $L dt = (0.03 - 4.7) \text{ fb}^{-1}$
inclusive searches	MSUGRA/CMSSM : 1-lep + j's + E _{T,miss}	120 TeV q = g mass
	MSUGRA/CMSSM : multijets + E _{r,miss}	1-47 8-4 (2011) [ATLAS-CONF-2012-007] 650 GeV g mass (large m ₀)
	Pheno model : 0-lep + j's + $E_{\tau,miss}$	L=47 m ⁻¹ (2011) (ATLAS-CONF-2012-333) 1.38 TeV q mass (m(g) < 2 TeV, light $\overline{\chi}_1^0$) ATLAS
	Pheno model : 0-lep + j's + E _{T,miss}	$L=47 \text{ tb}^{\circ} (2011) \text{ [ATLAS-CONF-2012-133]} 840 \text{ GeV} \widetilde{\text{g}} \text{ mass } (m(\widetilde{\text{q}}) \le 2 \text{ TeV}, \text{ light } \overline{\chi}_1^0) \qquad \qquad$
	Gluinomed. γ̃ [±] (ğ→ qα(χ̃ [±]):1-lep + j's + <i>Ε</i> _{τ,miss}	$\frac{1-47 \text{ m}^4 (2011) [ATLAB-CONF-2012-041]}{\text{g} \text{ mass} (m(\overline{\chi}_1^0) < 200 \text{ GeV}, m(\overline{\chi}^\pm) - \frac{1}{2}(m(\overline{\chi}^0) + m(\widetilde{g}))$
nolus	GMSB : 2-lep OS _{or} + $E_{T,miss}$	L=1.0 m ⁻¹ (2011) [ATLA8-CONF-2011-168] 810 θeV g̃ mass (tanβ < 35)
1L	GMSB : $1-\tau + j'\varepsilon + E_{\tau,miss}$	L=2.1 tb* (2011) [ATLA8-CONF-2012-006] 820 GeV \tilde{g} mass (lan β > 20)
	GMSB: $2-\tau + j's + E_{r,miss}$	$L=2.1 \text{ m}^4$ (2011) [ATLAR.CONF.2012.003] 990 9eV \tilde{g} mass (tan $\beta > 20$)
	GGM :γγ + E _{T,miss}	L=1.1 m ⁻¹ (2011) [1111.4110] 806 GeV \overline{g} mass ($m(\overline{\chi}_1^0) > 50 \text{ GeV}$)
C	Gluino med. $\tilde{b} (\tilde{g} \rightarrow b \tilde{\chi}_1^0)$: 0-lep + b-j's + $E_{T,miss}$	$L=2.1 \text{ ID}^{\circ}$ (2011) [ATLAS-CONF-2012-003] BOI GeV $\widetilde{\text{g}}$ mass (m($\overline{\chi}_1^0$) < 300 GeV)
third generation	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t \tilde{\chi}_1^0$) : 1 lep + b-j's + $E_{r,mss}$	$L=2.1 \text{ m}^{-1}$ (2011) [ATLAS-CONF-2012-403] 710 GeV \tilde{g} mass ($m(\chi_1^0) < 150 \text{ GeV}$)
mer	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t \tilde{t} \gamma_{1}^{0}$): 2-lep (SS) + J's + $E_{T,miss}$	L=2.1 m ⁻¹ (2011) [ATLA8-CONF-2012-404] 860 GeV g̃ mass (m(\overline{\chi}_1) ≤ 210 GeV)
6 0	Gluino med. t̃ (g̃→tt̃ ṽ) : multi-j's + E _{7,miss}	μ=47 m ⁻¹ (2011) [ATLAS-CONF-2012-007] 800 DeV g mass (m(χ ₁ ⁰) < 200 GeV)
This	Direct \overline{bb} ($\overline{b}_1 \rightarrow b \widetilde{\chi}_1^0$) : 2 b-jets + $E_{\tau,miss}$	L=2.1 tb ⁴ (2011) (1112.3832) b mass $(m(\tilde{\chi}_1) \le 60 \text{ GeV})$
	Direct ft (GMSB) : Z(→II) + b-jet + E	L=2.1 m ⁻¹ (2011) [ATLA8-CONF-2012-408] 310 0eV $\tilde{1}$ mass (115 < $m(\tilde{\chi}_1^0)$ < 230 GeV)
g	Direct gaugino $(\tilde{\chi}_1^{\dagger} \tilde{\chi}_2^0 \rightarrow 3 \tilde{\chi}_1^0)$: 2-lep SS + $E_{T,miss}$	$ (m(\overline{\chi}_1^0) < 40 \text{ GeV}, \overline{\chi}_1^0, m(\overline{\chi}_1^0) = m(\overline{\chi}_2^0), m(\overline{lv}) = \frac{1}{2}(m(\overline{\chi}_1^0) + m(\overline{\chi}_2^0)) $
9	Direct gaugino $(\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\circ} \rightarrow 3I \tilde{\chi}_1^{\circ})$: 3-lep + $E_{T,relation}$	L=2.1 m ⁻¹ (2011) [ATLA8-CONF-2012-123] 260 GeV $\overline{\chi}_{1}^{\pm}$ mass ($m(\overline{\chi}_{1}^{\circ}) \le 170$ GeV, and as above)
ŝ	AMSB : long-lived $\tilde{\chi}_1^{\pm}$	$L=4.7$ to " (2011) [CF-2012-434] $\overline{\chi}_{1}^{\pm}$ mass (1 < $\tau(\overline{\chi}_{1}^{\pm})$ < 2 ns, 90 GeV limit in [0.2,90] ns)
ang-lived particles	Stable massive particles (SMP) : R-hadrons	2-94 pb ⁴ (2010) [1109.1994] 602 0+V g mass
D D	SMP : R-hadrons	L=34 pb ⁴ (2010) [1103.1884] 284 GeV b mass
-MWB	SMP : R-hadrons	L=34 pp* (2010) [1103.1884] 318 GeV T mats
- Euo	SMP : R-hadrons (Pixel det. only)	1=2.1 8-1 (2011) [ATLAR.CONF.2012.192] 810 0+V g mass
	GMSB : stable τ	L=37 pb ¹ (2010) [1108.4486] 138 GeV τ mass
>	RPV : high-mass eµ	$\frac{1.32 \text{ TeV}}{\overline{v}_{\text{t}}} = 0.10, \lambda_{312} = 0.05)$
RPV	Bilinear RPV : 1-lep + j's + E _{T,mice}	L=1.0 mb ⁻¹ contra three second 7eo GeV q = g mass (cr _{Lon} < 15 mm)
	MSUGRA/CMSSM - BC1 RPV : 4-lepton + E _{T,miss}	L=2.1 m ⁻¹ (2011) [ATLA8-CONF-2012-186] 1.77 TeV g mass
	Hypercolour scalar gluons : 4 jets, m _{ij} ∞ m _{si}	$L=34 \text{ pb}^4$ (2010) [1110.2000] 185 GeV sgluon mass (excl: $m_{sg} < 100 \text{ GeV}, m_{sg} - 140 \pm 3 \text{ GeV}$)
		10 ⁻¹ 1 10

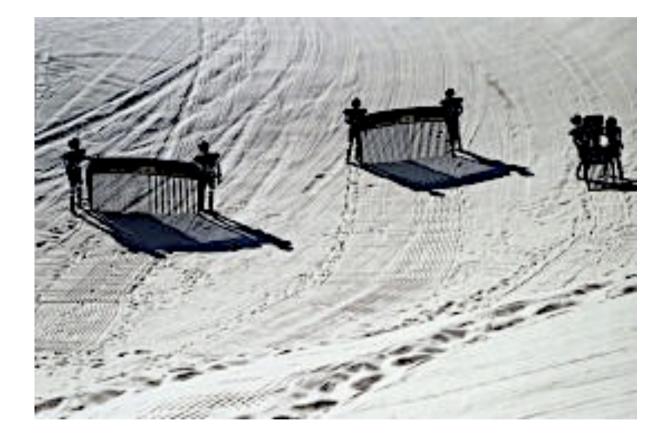

Oliver Stelzer-Chilton



Results CMS

Hadronic searches

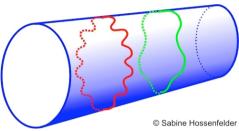

Leptonic searches


SUSY Summary

- Strongly produced SUSY nearing ~TeV exclusion for gluinos and 1st and 2nd generation squarks
- With larger luminosity becoming sensitive to electroweak SUSY production
- New focus on natural SUSY
 Theoretical motivation ("Naturalness")
 SUSY can cancel top loop corrections to the Higgs mass with 1-loop stop contribution if the stop is light enough Alfredo Gurrola

- Wide range of SUSY searches involving third generation squarks and sleptons taking shape
- Direct search for stop quarks anticipated for both experiments

Exotics Searches

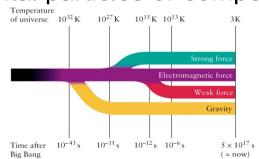


Large differ

Exotics

Large difference between electroweak scale and gravity could be explained by extra dimensions (ADD, Randall-Sundrum, UED...)

Neutrinos have mass, where are the right handed neutrinos?

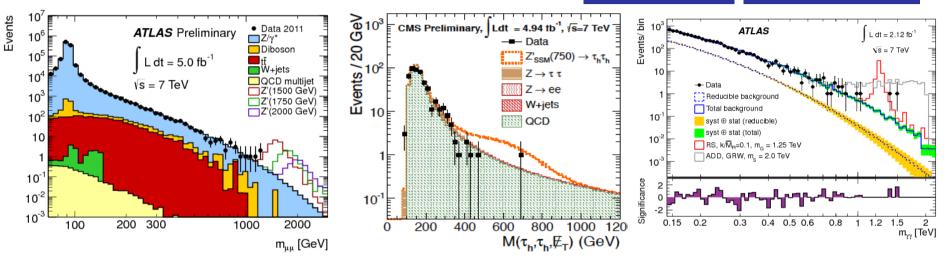


Is there a fourth generation of quarks?

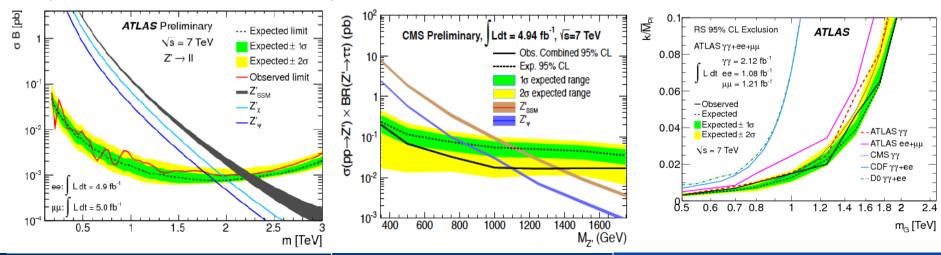
Are quarks and leptons fundamental particles or composites?

What is dark matter?

Can all forces be unified?



In Exotics searches, cast a wide net for signs for new physics

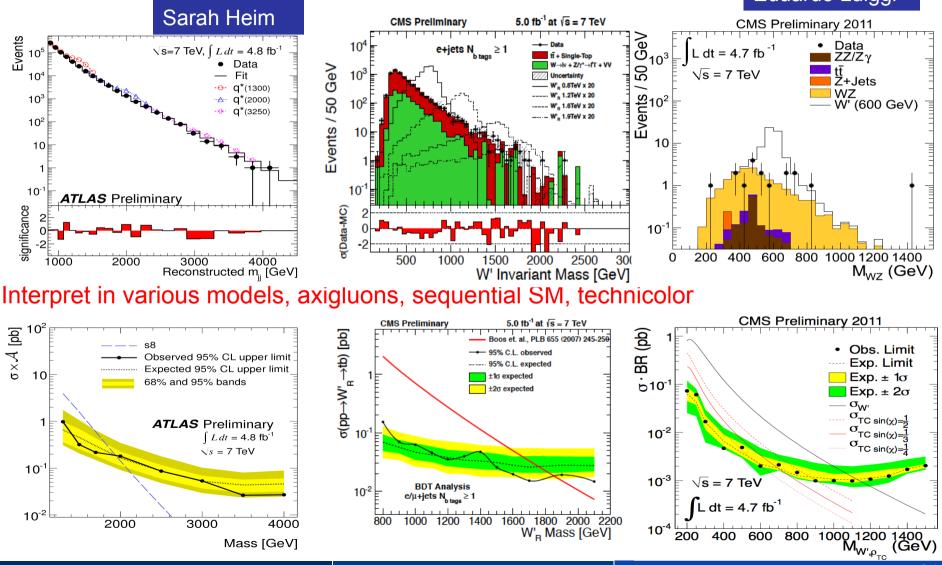

Combine physics objects: electrons, muons, photons, jets, b-jets, top quarks missing energy and interpret in benchmark models

Classic Resonance Searches

Look for resonances in dijet, dilepton, lepton-neutrino, diphoton, multijet, photon-jet, diboson, di-tau, di-top, top-bottom... <u>final states</u>

Interpret in various models, sequential SM, E6, RS Gravitons, ADD

Oliver Stelzer-Chilton


TRIUMF

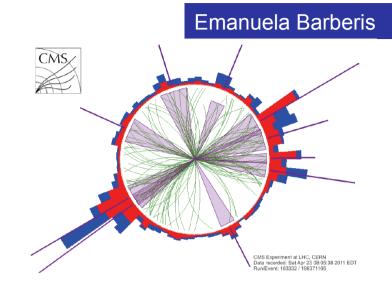
Eduardo Luiggi

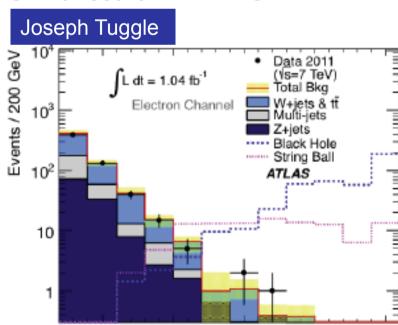
Sarah Heim

Resonance Searches

Look for resonances in dijet, dilepton, lepton-neutrino, diphoton, multijet, photon-jet, diboson, di-tau, di-top, top-bottom... final states

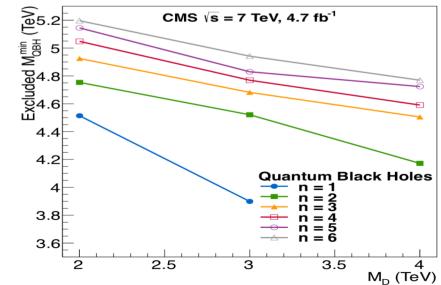
Oliver Stelzer-Chilton


TRIUMF


26

Black Holes

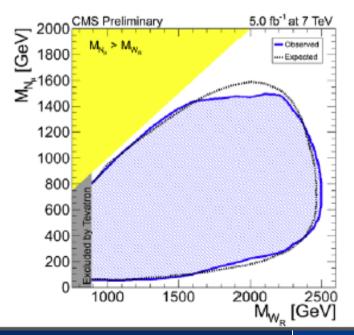
Signature of TeV scale gravity: characterized by democratic decay via Hawking radiation into high multiplicity, isotropic, energetic, final states of jets, electrons, photons, and muons.

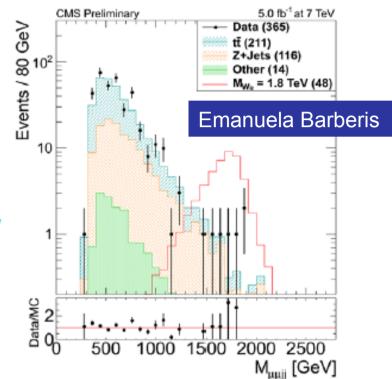

Analysis strategy: search for deviations in $S_T = \Sigma \text{ jets} + \gamma' \text{s} + l' \text{s} + E_T^{\text{miss}}$ distribution in bins of N objects

Similar search in ATLAS

Minimum QBH mass vs M_D for n extra-dimensions: 3.8-5.2 TeV range for M_D up to 4 TeV

Oliver Stelzer-Chilton


Heavy Neutrinos


Right-handed W_{R} bosons and heavy neutrinos N(e or $\mu)$ arise in Left-Right

Symmetric extensions of the Standard Model:

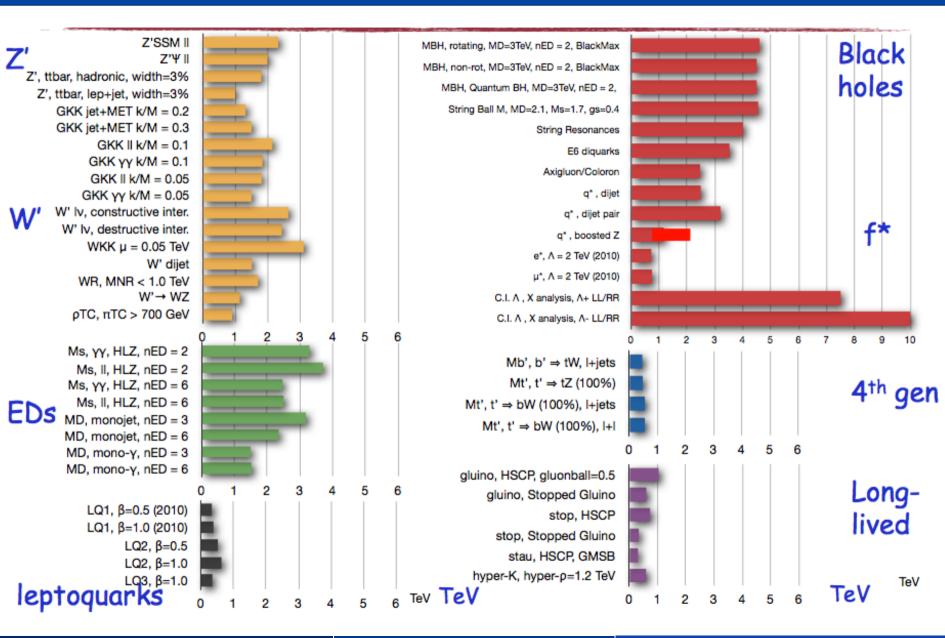
$$qq \rightarrow W_R \rightarrow N\ell \rightarrow W_R^*\ell\ell \rightarrow \ell\ell jj$$

characterized by mass resonances both in ℓjj and ℓℓjj Analysis strategy: (5 fb⁻¹) ✓ final states with two muons and two jets. ✓ Lead μ p_T> 60GeV, M_m>200GeV, M_{mujj}>600GeV

95% C.L. limits exclude a region in the (M_N , M_{W_R}) space that extends to M_{W_R} = 2.5 TeV.

CMS EXO-11-091

Oliver Stelzer-Chilton

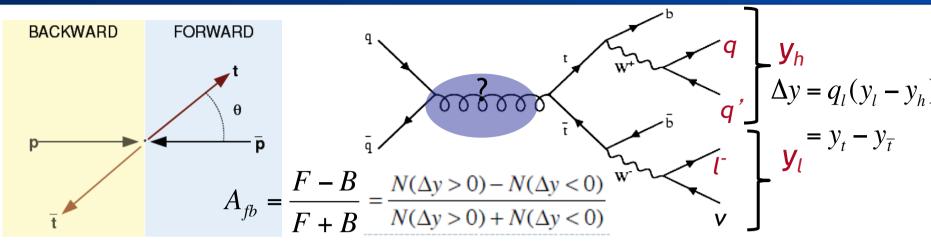

TRIUMF

ATLAS Exotics Summary

		ATLAS Exotics Sear	ches* - 95% CL Lower Lin	nits (Status: Ma	rch 2012)
	Large ED (ADD) : monojet	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]	3.2 TeV M _D		
	Large ED (ADD) : diphoton	L=2.1 fb ⁻¹ (2011) [1112.2194]		(GRW cut-off)	ATLAS
S	UED : $\gamma\gamma + E_{\tau,miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	1.23 TeV Compact. scale	· · ·	Preliminary
Extra dimensions	RS with $k/M_{\rm Pl} = 0.1$: diphoton, $m_{\gamma\gamma}$	L=2.1 fb ⁻¹ (2011) [1112.2194]	1.85 TeV Graviton m	<i>c</i>	
ens	RS with $k/M_{\rm Pl} = 0.1$: dilepton, $m_{\rm H}$	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.16 TeV Graviton	mass I dt	= (0.04 - 5.0) fb ⁻¹
lim	RS with $k/M_{Pl} = 0.1$: ZZ resonance, $m_{IIII / IIII}$	L=1.0 fb ⁻¹ (2011) [1203.0718]	845 Gev Graviton mass	JEan	
g	RS with g_{gagKK} / $g = -0.20$: $t\bar{t} \rightarrow l+jets$, $m_{t\bar{t}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-029]	1.03 TeV KK gluon mass		s = 7 TeV
-Xt	ADD BH $(M_{TH}^{gqgK}/M_{D}^{s}=3)$: multijet, Σp_{τ} , N_{jets}^{tf}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068]	1.37 TeV M _D (δ=6)		
	ADD BH (M_{TH}/M_{D} =3) : SS dimuon, $\dot{N}_{ch. part.}$	L=1.3 fb ⁻¹ (2011) [1111.0080]	1.25 TeV M _D (δ=6)		
	ADD BH ($M_{TH}/M_{D}=3$) : leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147]	1.5 TeV M _D (δ=6)		
	Quantum black hole : dijet, $F_{\chi}(m_{jj})$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	4.11 TeV	$M_D (\delta=6)$	
	qqqq contact interaction : $\hat{\chi}(m_{\parallel})$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]		7.8 TeV A	
0	qqll Cl : ee, μμ combined, m __	L=1.1-1.2 fb ⁻¹ (2011) [1112.4462]		10.2 TeV A (constr	ructive int.)
	uutt CI : SS dilepton + jets + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1202.5520]	1.7 TeV \Lambda		
	SSM Z' : m _{ee/µµ}	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.21 TeV Z' mass		
>	SSM W': m _{T,e/µ}	L=1.0 fb ⁻¹ (2011) [1108.1316]	2.15 TeV W' mass		
~	Scalar LQ pairs (β=1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [1112.4828]	660 Gev 1 st gen. LQ mass		
ΓČ	Scalar LQ pairs (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ (2011) [Preliminary]	685 Gev 2 nd gen. LQ mass		
	4^{th} generation : Q $\overline{Q}_{4} \rightarrow WqWq$	L=1.0 fb ⁻¹ (2011) [1202.3389] 350 GeV	<u> </u>		
New quarks	4 th generation : $\overset{4}{U}_{a} \xrightarrow{4} WbWb$		u₄ mass		
druș	4^{th} generation : $4^{d}_{,} \overline{4}_{,} \rightarrow WtWt$		o Gev d, mass		
N.	New quark b' : b' $\overline{b} \rightarrow Zb+X, m_{zb}$	L=2.0 fb ⁻¹ (2011) [Preliminary] 400 G	4		
	$T\overline{I} \longrightarrow t\overline{t} + A_{-}A_{-}$: 1-lep + jets + F_{-}				
ü.	$T\overline{T}_{exo. 4th gen.} \rightarrow t\overline{t} + A_0A_0$: 1-lep + jets + $E_{T,miss}$ Excited quarks: γ -jet resonance, m_{miss}	$L=2.1 \text{ fb}^{-1}$ (2011) [1112.3580]	2.46 TeV g* mas	s	
Excit. term.	Excited quarks : dijet resonance, $m_{ij}^{\gamma j et}$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	3.35 TeV Q*		
11	Excited electron : e- γ resonance, $m_{e\gamma}^{\parallel}$	L=4.9 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	2.0 TeV e* mass (
ž	Excited muon : μ - γ resonance, $m_{\mu\gamma}^{e\gamma}$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	1.9 TeV μ* mass (/		
	Techni-hadrons : dilepton, m _{ee/μμ}	L=1.1-1.2 (b ⁻¹ (2011) [ATLAS-CONF-2012-025]			
	Techni-hadrons : WZ resonance (vIII), $m_{\tau,WZ}$		Gev $\rho_{T} mass (m(\rho_{T}) = m(\pi_{T}) + m_{W}$		
	Major. neutr. (LRSM, no mixing) : 2-lep + jets		1.5 TeV N mass $(m(P_T) = m(n_T) + m_W$ 1.5 TeV N mass $(m(W)$		
1	W_{P} (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary] L=2.1 fb ⁻¹ (2011) [Preliminary]		$r_R = 2 (m(N) < 1.4 GeV)$	
Umer	$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm\pm} \rightarrow \mu\mu$)=1) : SS dimuon, $m_{\mu\mu}$		H ^{±±} mass	ss (m(N) < 1.4 GeV)	
5	Color octet scalar : dijet resonance, m_{ii}		-		
		L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	1.94 TeV Scalar res		
	Vector-like quark : CC, m	L=1.0 fb ⁻¹ (2011) [1112.5755]	900 GeV Q mass (coupling κ _q	$a = v/m_{a}$	
	Vector-like quark : NC, m _{ilq}	L=1.0 fb ⁻¹ (2011) [1112.5755]	760 GeV Q mass (coupling κ _{qQ} =	= v/m _o)	
		10 ⁻¹	1	10	1
					ss scale [TeV]
*Or	nly a selection of the available mass limits on new states or	phenomena shown		IVIA	

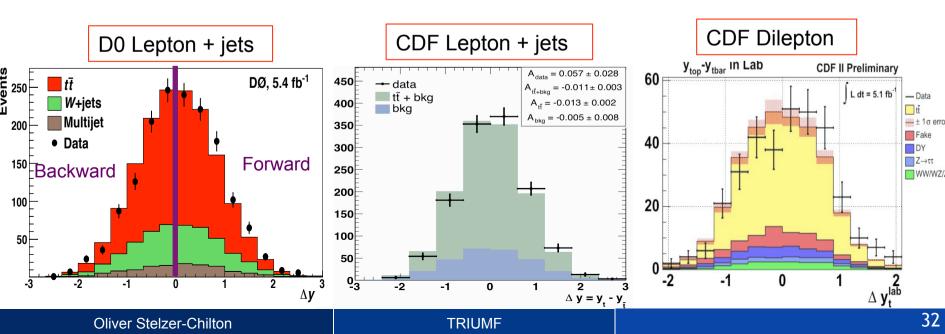
*Only a selection of the available mass limits on new states or phenomena shown

CMS Exotics Summary

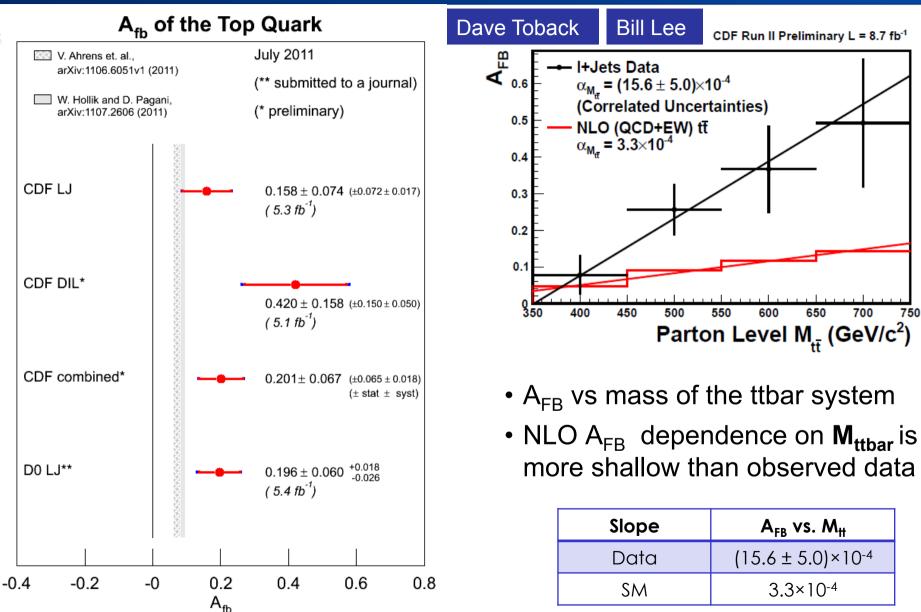

Oliver Stelzer-Chilton

TRIUMF

Searches Involving Top Quarks

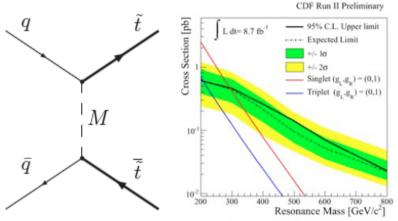


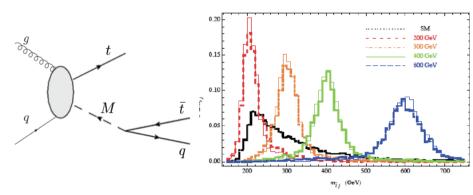
Forward Backward Asymmetry



- SM predicts small asymmetry at NLO QCD: A_{fb}=0.066 *Powheg* + *EW Corrections*:
- New physics could enhance observed A_{fb}

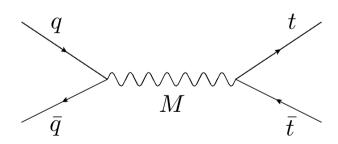
JHEP **0709**, 126 (2007), Phys. Rev. D **84**, 093003 (2011); JHEP **1201**, 063 (2012)


Forward Backward Asymmetry


TRIUMF

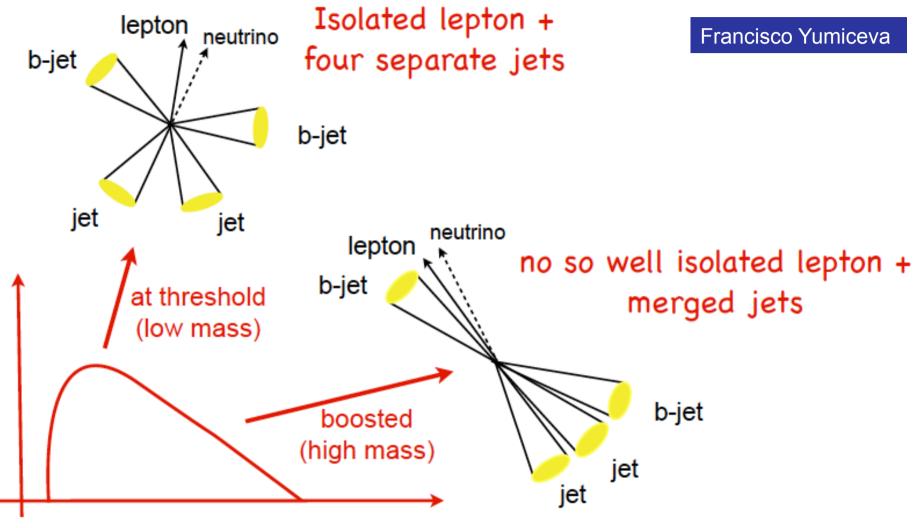
Forward Backward Asymmetry

- Possible explanations: Ian-Woo Kim
 - t-channel exchange



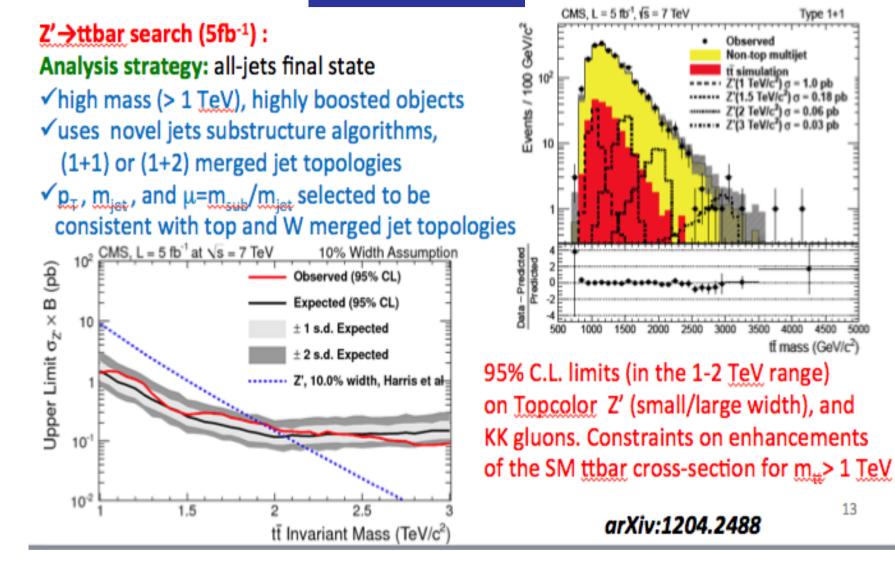
Top-jet resonance signature

s-channel resonance


LHC results expected soon

If at high mass (>2 TeV) and large coupling

- tt cross-section measurements at Tevatron and LHC constrain both explanations
- Atomic parity violation constraints important for t-channel explanation


Searches for Top Resonances

top-antitop Invariant Mass

Searches for Top Resonances

Emanuela Barberis

Type 1+1

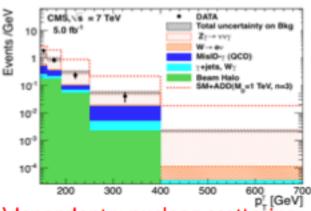
4500 tf mass (GeV/c2)

13

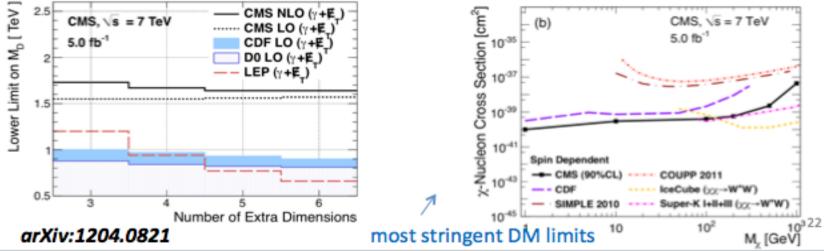
Conclusions

- **Outstanding performance** of the LHC in first two years of Physics (*with rapid turn around from data taking to quality physics*)
- Doubled dataset size within weeks and months, 8 TeV results coming soon!
- New Physics was not just "around the corner"
- Good news:
 - Stringent/significantly improved limits on new Physics
 - Keep excluding parameter space or make a grand discovery!
- Higgs Search is finally coming to an end
 - Almost full Higgs mass range is excluded The most likely region has been narrowed down to $m_{\rm H}$ =117-127 GeV
 - Some hints of a signal in the region m_H =125 GeV, not significant, yet!
 - 2012 will be the year of the Higgs:
 Either with a conclusive observation or with an exclusion
- Entered New territory at the Energy Frontier *This is only the beginning*!
- LHC expects to deliver ~1000 x data over it's lifetime

Dark Matter/Extra Dimensions


Emanuela Barberis

Search for Dark Matter or for Graviton production in association with a γ (5 fb⁻¹):


✓ Dark Matter process: $qq \rightarrow \chi \chi \gamma \rightarrow \gamma + E_{\tau}^{miss}$ ✓ ADD process: $qq \rightarrow G\gamma \rightarrow \gamma + E_{\tau}^{miss}$

Analysis strategy: central, isolated high p_T photons (p_T >145 GeV) + large E_T^{miss} (>130 GeV)

95% C.L. limits on the modified Planck scale, M_D, in ADD models between 1.65-1.71 TeV (for n = 3-6), and 90% C.L. upper limits for sp

(for n = 3-6), and 90% C.L. upper limits for spin-(in)dependent χ-nucleon scattering:

Long Lived Particles

Orin Harris

Long-lived particle ATLAS Analyses

•	Neutral massive particles	
	 Hidden Valley: displaced vertex 	arXiv:1203.1303v2
	 RPV LSP decay: displaced vertex 	arXiv:1109.2242v2
•	Charged massive particles	
	 – R-hadrons: dE/dx, β 	ATLAS-CONF-2012-022
		arXiv:1103.1984v1
	– Stable stau: β	arXiv:1106.4495v2
	 HIP: high-threshold TRT hits 	arXiv:1102.0459v3
•	Stopped R-hadron	
	 Jets in empty/unpaired bunch crossings 	arXiv:1201.5595v2
•	Anomaly-Mediated SUSY-breaking	
	 Truncated tracks: missing TRT hits 	ATLAS CONT 2012 024
	- Hundaleu tracks. missing iki mis	ATLAS-CONF-2012-034